Files
neuroevolution/mathema/eval_main.py
2025-12-13 14:12:35 +01:00

48 lines
1.1 KiB
Python

import asyncio
import logging
from dotenv import load_dotenv
from mathema.core.population_monitor import init_population
from mathema.utils.logging_config import setup_logging
setup_logging()
log = logging.getLogger(__name__)
N_RUNS = 10
async def run_single_car_experiment(run_idx: int):
pop_id = f"car_pop_run{run_idx:02d}"
log.info(f"=== START RUN {run_idx + 1}/{N_RUNS} ({pop_id}) ===")
monitor = await init_population((
pop_id,
[{"morphology": "car_racing_features", "neural_afs": ["tanh"]}],
"gt",
"competition",
))
# 👉 warten, bis der Monitor sich selbst beendet
await monitor._stopped_evt.wait()
# optional: letzte Stats loggen
s = monitor.state
best = await monitor._best_fitness_in_population(s.population_id)
log.info(
f"=== END RUN {run_idx + 1}/{N_RUNS} "
f"gens={s.pop_gen} best_fitness={best:.6f} evals={s.eval_acc} ==="
)
async def main():
load_dotenv()
for i in range(N_RUNS):
await run_single_car_experiment(i)
log.info("=== ALL RUNS FINISHED ===")
if __name__ == "__main__":
asyncio.run(main())