import asyncio import os import time from typing import Any, Dict, List, Tuple, Optional import morphology from genotype import construct, save_genotype, print_genotype from exoself import Exoself class Trainer: def __init__( self, morphology_spec=morphology, hidden_layer_densities: List[int] = None, *, max_attempts: int = 5, eval_limit: float = float("inf"), fitness_target: float = float("inf"), experimental_file: Optional[str] = "experimental.json", best_file: Optional[str] = "best.json", exoself_steps_per_eval: int = 0, ): self.morphology_spec = morphology_spec self.hds = hidden_layer_densities or [] self.max_attempts = max_attempts self.eval_limit = eval_limit self.fitness_target = fitness_target self.experimental_file = experimental_file self.best_file = best_file self.exoself_steps_per_eval = exoself_steps_per_eval self.best_fitness = float("-inf") self.best_genotype: Optional[Dict[str, Any]] = None self.eval_acc = 0 self.cycle_acc = 0 self.time_acc = 0.0 async def _run_one_attempt(self) -> Tuple[float, int, int, float]: print("constructing genotype...") geno = construct( self.morphology_spec, self.hds, file_name=self.experimental_file, # <-- schreibt Startnetz nach experimental.json add_bias=True ) fitness, evals, cycles, elapsed = await self._evaluate_with_exoself(geno) return fitness, evals, cycles, elapsed async def _evaluate_with_exoself(self, genotype: Dict[str, Any]) -> Tuple[float, int, int, float]: print("creating exoself...") ex = Exoself(genotype, file_name=self.experimental_file) best_fitness, evals, cycles, elapsed = await ex.train_until_stop() return best_fitness, evals, cycles, elapsed async def go(self): attempt = 1 while True: print(".........") print("current attempt: ", attempt) print(".........") if attempt > self.max_attempts or self.eval_acc >= self.eval_limit or self.best_fitness >= self.fitness_target: # Abschlussausgabe wie im Buch if self.best_file and os.path.exists(self.best_file): print_genotype(self.best_file) print( f" Morphology: {getattr(self.morphology_spec, '__name__', str(self.morphology_spec))} | " f"Best Fitness: {self.best_fitness} | EvalAcc: {self.eval_acc}" ) return { "best_fitness": self.best_fitness, "eval_acc": self.eval_acc, "cycle_acc": self.cycle_acc, "time_acc": self.time_acc, "best_file": self.best_file, } print("RUN ONE ATTEMPT!") fitness, evals, cycles, elapsed = await self._run_one_attempt() print("update akkus...") self.eval_acc += evals self.cycle_acc += cycles self.time_acc += elapsed # Besser als bisher? if fitness > self.best_fitness: self.best_fitness = fitness if self.best_file and self.experimental_file and os.path.exists(self.experimental_file): os.replace(self.experimental_file, self.best_file) attempt = 1 else: attempt += 1 if __name__ == "__main__": trainer = Trainer( morphology_spec=morphology, hidden_layer_densities=[2], max_attempts=200, eval_limit=float("inf"), fitness_target=99.9, experimental_file="experimental.json", best_file="best.json", exoself_steps_per_eval=0, ) asyncio.run(trainer.go())