This commit is contained in:
2025-09-24 09:45:17 +02:00
commit 0ad84365e4
5 changed files with 639 additions and 0 deletions

View File

@@ -0,0 +1,196 @@
import json
import random
import math
from typing import List, Dict, Tuple
# ---- Hilfsfunktionen ----
def generate_id():
"""Generiert eine eindeutige ID basierend auf Zufallszahlen."""
return random.random()
def create_neural_weights(vector_length: int):
"""Erstellt eine Liste von Gewichten für eine Verbindung."""
return [random.uniform(-0.5, 0.5) for _ in range(vector_length)]
# ---- Klassen ----
class Sensor:
def __init__(self, name: str, vector_length: int):
self.id = generate_id()
self.name = name
self.vector_length = vector_length
self.cx_id = None # Wird später hinzugefügt
self.fanout_ids = [] # Verbindungen zu Neuronen
def to_dict(self):
return {
"id": self.id,
"name": self.name,
"vector_length": self.vector_length,
"cx_id": self.cx_id,
"fanout_ids": self.fanout_ids,
}
class Actuator:
def __init__(self, name: str, vector_length: int):
self.id = generate_id()
self.name = name
self.vector_length = vector_length
self.cx_id = None # Wird später hinzugefügt
self.fanin_ids = [] # Verbindungen von Neuronen
def to_dict(self):
return {
"id": self.id,
"name": self.name,
"vector_length": self.vector_length,
"cx_id": self.cx_id,
"fanin_ids": self.fanin_ids,
}
class Neuron:
def __init__(self, layer_index: int, input_ids: List[Tuple[float, int]], output_ids: List[float], cx_id: float):
self.id = generate_id()
self.layer_index = layer_index
self.cx_id = cx_id
self.activation_function = "tanh"
self.input_weights = [
{"input_id": input_id, "weights": create_neural_weights(vector_length)}
for input_id, vector_length in input_ids
]
self.output_ids = output_ids
def to_dict(self):
return {
"id": self.id,
"layer_index": self.layer_index,
"cx_id": self.cx_id,
"activation_function": self.activation_function,
"input_weights": self.input_weights,
"output_ids": self.output_ids,
}
class Cortex:
def __init__(self, sensor_ids: List[float], actuator_ids: List[float], neuron_ids: List[float]):
self.id = generate_id()
self.sensor_ids = sensor_ids
self.actuator_ids = actuator_ids
self.neuron_ids = neuron_ids
def to_dict(self):
return {
"id": self.id,
"sensor_ids": self.sensor_ids,
"actuator_ids": self.actuator_ids,
"neuron_ids": self.neuron_ids,
}
# ---- Hauptfunktionen ----
def construct_genotype(sensor_name: str, actuator_name: str, hidden_layer_densities: List[int], file_name: str):
"""
Konstruktion eines Genotyps und Speicherung in einer JSON-Datei.
"""
# Sensor erstellen
if sensor_name == "rng":
sensor = Sensor(name="rng", vector_length=2)
else:
raise ValueError(f"System does not support a sensor by the name: {sensor_name}")
# Aktuator erstellen
if actuator_name == "pts":
actuator = Actuator(name="pts", vector_length=1)
else:
raise ValueError(f"System does not support an actuator by the name: {actuator_name}")
# Neuronenschichten erstellen
output_layer_density = actuator.vector_length
layer_densities = hidden_layer_densities + [output_layer_density]
cortex_id = generate_id()
neurons = create_neuro_layers(
cortex_id,
sensor,
actuator,
layer_densities
)
# Sensor und Aktuator mit Cortex-Informationen aktualisieren
input_layer_neurons = neurons[0]
output_layer_neurons = neurons[-1]
sensor.cx_id = cortex_id
sensor.fanout_ids = [neuron.id for neuron in input_layer_neurons]
actuator.cx_id = cortex_id
actuator.fanin_ids = [neuron.id for neuron in output_layer_neurons]
# Cortex erstellen
neuron_ids = [neuron.id for layer in neurons for neuron in layer]
cortex = Cortex(
sensor_ids=[sensor.id],
actuator_ids=[actuator.id],
neuron_ids=neuron_ids
)
# Genotyp erstellen
genotype = {
"cortex": cortex.to_dict(),
"sensor": sensor.to_dict(),
"actuator": actuator.to_dict(),
"neurons": [neuron.to_dict() for layer in neurons for neuron in layer]
}
# Genotyp in Datei speichern
with open(file_name, "w") as file:
json.dump(genotype, file, indent=4)
print(f"Genotype saved to {file_name}")
def create_neuro_layers(cortex_id: float, sensor: Sensor, actuator: Actuator, layer_densities: List[int]) -> List[
List[Neuron]]:
"""
Erstellt alle Neuronen in allen Schichten des Netzwerks.
"""
neurons = []
input_ids = [(sensor.id, sensor.vector_length)]
for layer_index, layer_density in enumerate(layer_densities):
output_ids = []
if layer_index < len(layer_densities) - 1:
# IDs der nächsten Schicht generieren
output_ids = [generate_id() for _ in range(layer_densities[layer_index + 1])]
# Neuronen für die aktuelle Schicht erstellen
layer_neurons = [
Neuron(layer_index=layer_index, input_ids=input_ids, output_ids=output_ids, cx_id=cortex_id)
for _ in range(layer_density)
]
neurons.append(layer_neurons)
# Aktuelle Schicht wird die Eingabe für die nächste Schicht
input_ids = [(neuron.id, 1) for neuron in layer_neurons]
# Letzte Schicht mit Verbindung zum Aktuator erstellen
final_layer = neurons[-1]
for neuron in final_layer:
neuron.output_ids = [actuator.id]
return neurons
# ---- Beispielverwendung ----
if __name__ == "__main__":
# Genotyp erstellen und speichern
construct_genotype(
sensor_name="rng",
actuator_name="pts",
hidden_layer_densities=[4,3], # Dichten der versteckten Schichten (z. B. 4 Neuronen in der ersten Schicht, 3 in der zweiten)
file_name="genotype.json" # Name der Datei, in der der Genotyp gespeichert wird
)