initial.
This commit is contained in:
258
experiments/genotype.json
Normal file
258
experiments/genotype.json
Normal file
@@ -0,0 +1,258 @@
|
||||
{
|
||||
"cortex": {
|
||||
"id": 0.38985127736117664,
|
||||
"sensor_ids": [
|
||||
0.5481697495393968
|
||||
],
|
||||
"actuator_ids": [
|
||||
0.300862433948894
|
||||
],
|
||||
"neuron_ids": [
|
||||
0.7892266733003815,
|
||||
0.08993126065168999,
|
||||
0.7353679413901013,
|
||||
0.7986671199471203,
|
||||
0.2619274118215478,
|
||||
0.1878355172703,
|
||||
0.5460586524022121,
|
||||
0.0325156080072021
|
||||
]
|
||||
},
|
||||
"sensor": {
|
||||
"id": 0.5481697495393968,
|
||||
"name": "rng",
|
||||
"vector_length": 2,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"fanout_ids": [
|
||||
0.7892266733003815,
|
||||
0.08993126065168999,
|
||||
0.7353679413901013,
|
||||
0.7986671199471203
|
||||
]
|
||||
},
|
||||
"actuator": {
|
||||
"id": 0.300862433948894,
|
||||
"name": "pts",
|
||||
"vector_length": 1,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"fanin_ids": [
|
||||
0.0325156080072021
|
||||
]
|
||||
},
|
||||
"neurons": [
|
||||
{
|
||||
"id": 0.7892266733003815,
|
||||
"layer_index": 0,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.5481697495393968,
|
||||
"weights": [
|
||||
-0.2010596737648036,
|
||||
-0.017559575650012982
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.11787440750922895,
|
||||
0.9473188607259506,
|
||||
0.9045741659912035
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.08993126065168999,
|
||||
"layer_index": 0,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.5481697495393968,
|
||||
"weights": [
|
||||
0.49425647147649876,
|
||||
0.09556856915703738
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.11787440750922895,
|
||||
0.9473188607259506,
|
||||
0.9045741659912035
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.7353679413901013,
|
||||
"layer_index": 0,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.5481697495393968,
|
||||
"weights": [
|
||||
-0.3432015569352376,
|
||||
-0.15663876804924903
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.11787440750922895,
|
||||
0.9473188607259506,
|
||||
0.9045741659912035
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.7986671199471203,
|
||||
"layer_index": 0,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.5481697495393968,
|
||||
"weights": [
|
||||
0.44235413103542676,
|
||||
-0.3014661028473905
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.11787440750922895,
|
||||
0.9473188607259506,
|
||||
0.9045741659912035
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.2619274118215478,
|
||||
"layer_index": 1,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.7892266733003815,
|
||||
"weights": [
|
||||
0.4815260544600901
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.08993126065168999,
|
||||
"weights": [
|
||||
-0.34742595611872107
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.7353679413901013,
|
||||
"weights": [
|
||||
0.1955465593022997
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.7986671199471203,
|
||||
"weights": [
|
||||
0.1420046463445398
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.804289241732289
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.1878355172703,
|
||||
"layer_index": 1,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.7892266733003815,
|
||||
"weights": [
|
||||
-0.26492297905129614
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.08993126065168999,
|
||||
"weights": [
|
||||
-0.483071194536965
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.7353679413901013,
|
||||
"weights": [
|
||||
0.0016581996680702371
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.7986671199471203,
|
||||
"weights": [
|
||||
0.47010344086613354
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.804289241732289
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.5460586524022121,
|
||||
"layer_index": 1,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.7892266733003815,
|
||||
"weights": [
|
||||
0.22583100100162312
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.08993126065168999,
|
||||
"weights": [
|
||||
0.22079487426614341
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.7353679413901013,
|
||||
"weights": [
|
||||
0.3514718848950448
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.7986671199471203,
|
||||
"weights": [
|
||||
0.03653443587296967
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.804289241732289
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 0.0325156080072021,
|
||||
"layer_index": 2,
|
||||
"cx_id": 0.37250552293263184,
|
||||
"activation_function": "tanh",
|
||||
"input_weights": [
|
||||
{
|
||||
"input_id": 0.2619274118215478,
|
||||
"weights": [
|
||||
0.4397546856440344
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.1878355172703,
|
||||
"weights": [
|
||||
0.024524621225712195
|
||||
]
|
||||
},
|
||||
{
|
||||
"input_id": 0.5460586524022121,
|
||||
"weights": [
|
||||
0.19908558570374346
|
||||
]
|
||||
}
|
||||
],
|
||||
"output_ids": [
|
||||
0.300862433948894
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
196
experiments/genotype_mapper.py
Normal file
196
experiments/genotype_mapper.py
Normal file
@@ -0,0 +1,196 @@
|
||||
import json
|
||||
import random
|
||||
import math
|
||||
from typing import List, Dict, Tuple
|
||||
|
||||
|
||||
# ---- Hilfsfunktionen ----
|
||||
def generate_id():
|
||||
"""Generiert eine eindeutige ID basierend auf Zufallszahlen."""
|
||||
return random.random()
|
||||
|
||||
|
||||
def create_neural_weights(vector_length: int):
|
||||
"""Erstellt eine Liste von Gewichten für eine Verbindung."""
|
||||
return [random.uniform(-0.5, 0.5) for _ in range(vector_length)]
|
||||
|
||||
|
||||
# ---- Klassen ----
|
||||
class Sensor:
|
||||
def __init__(self, name: str, vector_length: int):
|
||||
self.id = generate_id()
|
||||
self.name = name
|
||||
self.vector_length = vector_length
|
||||
self.cx_id = None # Wird später hinzugefügt
|
||||
self.fanout_ids = [] # Verbindungen zu Neuronen
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"id": self.id,
|
||||
"name": self.name,
|
||||
"vector_length": self.vector_length,
|
||||
"cx_id": self.cx_id,
|
||||
"fanout_ids": self.fanout_ids,
|
||||
}
|
||||
|
||||
|
||||
class Actuator:
|
||||
def __init__(self, name: str, vector_length: int):
|
||||
self.id = generate_id()
|
||||
self.name = name
|
||||
self.vector_length = vector_length
|
||||
self.cx_id = None # Wird später hinzugefügt
|
||||
self.fanin_ids = [] # Verbindungen von Neuronen
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"id": self.id,
|
||||
"name": self.name,
|
||||
"vector_length": self.vector_length,
|
||||
"cx_id": self.cx_id,
|
||||
"fanin_ids": self.fanin_ids,
|
||||
}
|
||||
|
||||
|
||||
class Neuron:
|
||||
def __init__(self, layer_index: int, input_ids: List[Tuple[float, int]], output_ids: List[float], cx_id: float):
|
||||
self.id = generate_id()
|
||||
self.layer_index = layer_index
|
||||
self.cx_id = cx_id
|
||||
self.activation_function = "tanh"
|
||||
self.input_weights = [
|
||||
{"input_id": input_id, "weights": create_neural_weights(vector_length)}
|
||||
for input_id, vector_length in input_ids
|
||||
]
|
||||
self.output_ids = output_ids
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"id": self.id,
|
||||
"layer_index": self.layer_index,
|
||||
"cx_id": self.cx_id,
|
||||
"activation_function": self.activation_function,
|
||||
"input_weights": self.input_weights,
|
||||
"output_ids": self.output_ids,
|
||||
}
|
||||
|
||||
|
||||
class Cortex:
|
||||
def __init__(self, sensor_ids: List[float], actuator_ids: List[float], neuron_ids: List[float]):
|
||||
self.id = generate_id()
|
||||
self.sensor_ids = sensor_ids
|
||||
self.actuator_ids = actuator_ids
|
||||
self.neuron_ids = neuron_ids
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"id": self.id,
|
||||
"sensor_ids": self.sensor_ids,
|
||||
"actuator_ids": self.actuator_ids,
|
||||
"neuron_ids": self.neuron_ids,
|
||||
}
|
||||
|
||||
# ---- Hauptfunktionen ----
|
||||
|
||||
|
||||
def construct_genotype(sensor_name: str, actuator_name: str, hidden_layer_densities: List[int], file_name: str):
|
||||
"""
|
||||
Konstruktion eines Genotyps und Speicherung in einer JSON-Datei.
|
||||
"""
|
||||
# Sensor erstellen
|
||||
if sensor_name == "rng":
|
||||
sensor = Sensor(name="rng", vector_length=2)
|
||||
else:
|
||||
raise ValueError(f"System does not support a sensor by the name: {sensor_name}")
|
||||
|
||||
# Aktuator erstellen
|
||||
if actuator_name == "pts":
|
||||
actuator = Actuator(name="pts", vector_length=1)
|
||||
else:
|
||||
raise ValueError(f"System does not support an actuator by the name: {actuator_name}")
|
||||
|
||||
# Neuronenschichten erstellen
|
||||
output_layer_density = actuator.vector_length
|
||||
layer_densities = hidden_layer_densities + [output_layer_density]
|
||||
cortex_id = generate_id()
|
||||
|
||||
neurons = create_neuro_layers(
|
||||
cortex_id,
|
||||
sensor,
|
||||
actuator,
|
||||
layer_densities
|
||||
)
|
||||
|
||||
# Sensor und Aktuator mit Cortex-Informationen aktualisieren
|
||||
input_layer_neurons = neurons[0]
|
||||
output_layer_neurons = neurons[-1]
|
||||
|
||||
sensor.cx_id = cortex_id
|
||||
sensor.fanout_ids = [neuron.id for neuron in input_layer_neurons]
|
||||
|
||||
actuator.cx_id = cortex_id
|
||||
actuator.fanin_ids = [neuron.id for neuron in output_layer_neurons]
|
||||
|
||||
# Cortex erstellen
|
||||
neuron_ids = [neuron.id for layer in neurons for neuron in layer]
|
||||
cortex = Cortex(
|
||||
sensor_ids=[sensor.id],
|
||||
actuator_ids=[actuator.id],
|
||||
neuron_ids=neuron_ids
|
||||
)
|
||||
|
||||
# Genotyp erstellen
|
||||
genotype = {
|
||||
"cortex": cortex.to_dict(),
|
||||
"sensor": sensor.to_dict(),
|
||||
"actuator": actuator.to_dict(),
|
||||
"neurons": [neuron.to_dict() for layer in neurons for neuron in layer]
|
||||
}
|
||||
|
||||
# Genotyp in Datei speichern
|
||||
with open(file_name, "w") as file:
|
||||
json.dump(genotype, file, indent=4)
|
||||
print(f"Genotype saved to {file_name}")
|
||||
|
||||
|
||||
def create_neuro_layers(cortex_id: float, sensor: Sensor, actuator: Actuator, layer_densities: List[int]) -> List[
|
||||
List[Neuron]]:
|
||||
"""
|
||||
Erstellt alle Neuronen in allen Schichten des Netzwerks.
|
||||
"""
|
||||
neurons = []
|
||||
input_ids = [(sensor.id, sensor.vector_length)]
|
||||
|
||||
for layer_index, layer_density in enumerate(layer_densities):
|
||||
output_ids = []
|
||||
if layer_index < len(layer_densities) - 1:
|
||||
# IDs der nächsten Schicht generieren
|
||||
output_ids = [generate_id() for _ in range(layer_densities[layer_index + 1])]
|
||||
|
||||
# Neuronen für die aktuelle Schicht erstellen
|
||||
layer_neurons = [
|
||||
Neuron(layer_index=layer_index, input_ids=input_ids, output_ids=output_ids, cx_id=cortex_id)
|
||||
for _ in range(layer_density)
|
||||
]
|
||||
neurons.append(layer_neurons)
|
||||
|
||||
# Aktuelle Schicht wird die Eingabe für die nächste Schicht
|
||||
input_ids = [(neuron.id, 1) for neuron in layer_neurons]
|
||||
|
||||
# Letzte Schicht mit Verbindung zum Aktuator erstellen
|
||||
final_layer = neurons[-1]
|
||||
for neuron in final_layer:
|
||||
neuron.output_ids = [actuator.id]
|
||||
|
||||
return neurons
|
||||
|
||||
|
||||
# ---- Beispielverwendung ----
|
||||
if __name__ == "__main__":
|
||||
# Genotyp erstellen und speichern
|
||||
construct_genotype(
|
||||
sensor_name="rng",
|
||||
actuator_name="pts",
|
||||
hidden_layer_densities=[4,3], # Dichten der versteckten Schichten (z. B. 4 Neuronen in der ersten Schicht, 3 in der zweiten)
|
||||
file_name="genotype.json" # Name der Datei, in der der Genotyp gespeichert wird
|
||||
)
|
||||
55
experiments/neuron.py
Normal file
55
experiments/neuron.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import random
|
||||
import math
|
||||
|
||||
|
||||
class SimpleNeuron:
|
||||
def __init__(self):
|
||||
# Initialisiere Gewichte und Bias mit Zufallswerten zwischen -0.5 und 0.5
|
||||
self.weights = [random.uniform(-0.5, 0.5) for _ in range(2)]
|
||||
self.bias = random.uniform(-0.5, 0.5)
|
||||
|
||||
def dot(self, input_vector):
|
||||
"""
|
||||
Berechnet das Skalarprodukt zwischen dem Eingabevektor und den Gewichten,
|
||||
fügt den Bias hinzu und gibt das Ergebnis zurück.
|
||||
"""
|
||||
acc = sum(i * w for i, w in zip(input_vector, self.weights))
|
||||
return acc + self.bias
|
||||
|
||||
def process_input(self, input_vector):
|
||||
"""
|
||||
Verarbeitet den Eingabevektor, berechnet den Dot-Produkt,
|
||||
wendet die Aktivierungsfunktion (tanh) an und gibt das Ergebnis zurück.
|
||||
"""
|
||||
print("**** Processing ****")
|
||||
print(f"Input: {input_vector}")
|
||||
print(f"Using Weights: {self.weights} and Bias: {self.bias}")
|
||||
|
||||
dot_product = self.dot(input_vector)
|
||||
output = math.tanh(dot_product)
|
||||
|
||||
print(f"Output: {output}")
|
||||
return output
|
||||
|
||||
|
||||
def sense(in_neuron, signal):
|
||||
"""
|
||||
Diese Funktion überprüft, ob das Signal eine Liste der Länge 2 ist,
|
||||
und sendet es an das Neuron zur Verarbeitung.
|
||||
"""
|
||||
if isinstance(signal, list) and len(signal) == 2:
|
||||
output = in_neuron.process_input(signal)
|
||||
print(f"Final Output: {output}")
|
||||
else:
|
||||
print("The Signal must be a list of length 2")
|
||||
|
||||
# Beispiel zur Verwendung:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Erstelle ein Neuron
|
||||
neuron = SimpleNeuron()
|
||||
|
||||
# Sende ein Signal (Eingabevektor) an das Neuron
|
||||
test_signal = [0.5, -0.3] # Beispiel-Eingabe
|
||||
sense(neuron, test_signal)
|
||||
130
experiments/simplest_nn.py
Normal file
130
experiments/simplest_nn.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import random
|
||||
import math
|
||||
import threading
|
||||
import queue
|
||||
|
||||
|
||||
class Neuron(threading.Thread):
|
||||
def __init__(self, weights, neuron_queue, actuator_queue):
|
||||
super().__init__()
|
||||
self.weights = weights
|
||||
self.neuron_queue = neuron_queue
|
||||
self.actuator_queue = actuator_queue
|
||||
self.running = True
|
||||
|
||||
def dot(self, input_vector):
|
||||
acc = sum(i * w for i, w in zip(input_vector, self.weights[:-1]))
|
||||
return acc + self.weights[-1]
|
||||
|
||||
def run(self):
|
||||
while self.running:
|
||||
try:
|
||||
message = self.neuron_queue.get(timeout=1)
|
||||
if message[0] == "forward":
|
||||
input_vector = message[1]
|
||||
print("**** Thinking ****")
|
||||
print(f"Input: {input_vector}")
|
||||
print(f"With Weights: {self.weights}")
|
||||
|
||||
dot_product = self.dot(input_vector)
|
||||
output = [math.tanh(dot_product)]
|
||||
|
||||
self.actuator_queue.put(("forward", output))
|
||||
elif message[0] == "terminate":
|
||||
self.running = False
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
|
||||
class Sensor(threading.Thread):
|
||||
def __init__(self, sensor_queue, neuron_queue):
|
||||
super().__init__()
|
||||
self.sensor_queue = sensor_queue
|
||||
self.neuron_queue = neuron_queue
|
||||
self.running = True
|
||||
|
||||
def run(self):
|
||||
while self.running:
|
||||
try:
|
||||
message = self.sensor_queue.get(timeout=1)
|
||||
if message == "sync":
|
||||
sensory_signal = [random.uniform(0, 1), random.uniform(0, 1)]
|
||||
print("**** Sensing ****")
|
||||
print(f"Signal from the environment: {sensory_signal}")
|
||||
|
||||
self.neuron_queue.put(("forward", sensory_signal))
|
||||
elif message == "terminate":
|
||||
self.running = False
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
class Actuator(threading.Thread):
|
||||
def __init__(self, actuator_queue):
|
||||
super().__init__()
|
||||
self.actuator_queue = actuator_queue
|
||||
self.running = True
|
||||
|
||||
def pts(self, control_signal):
|
||||
print("**** Acting ****")
|
||||
print(f"Using: {control_signal} to act on the environment.")
|
||||
|
||||
def run(self):
|
||||
while self.running:
|
||||
try:
|
||||
message = self.actuator_queue.get(timeout=1)
|
||||
if message[0] == "forward":
|
||||
control_signal = message[1]
|
||||
self.pts(control_signal)
|
||||
elif message[0] == "terminate":
|
||||
self.running = False
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
class Cortex(threading.Thread):
|
||||
def __init__(self, sensor_queue, neuron_queue, actuator_queue):
|
||||
super().__init__()
|
||||
self.sensor_queue = sensor_queue
|
||||
self.neuron_queue = neuron_queue
|
||||
self.actuator_queue = actuator_queue
|
||||
self.running = True
|
||||
|
||||
def run(self):
|
||||
while self.running:
|
||||
command = input("amna> ").strip()
|
||||
if command == "sense_think_act":
|
||||
self.sensor_queue.put("sync")
|
||||
elif command == "terminate":
|
||||
self.sensor_queue.put("terminate")
|
||||
self.neuron_queue.put(("terminate",))
|
||||
self.actuator_queue.put(("terminate",))
|
||||
self.running = False
|
||||
else:
|
||||
print("Unknown command. Please use 'sense_think_act' or 'terminate'.")
|
||||
print("Cortex terminated.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
sensor_queue = queue.Queue()
|
||||
neuron_queue = queue.Queue()
|
||||
actuator_queue = queue.Queue()
|
||||
|
||||
# initialize weights (including bias)
|
||||
weights = [random.uniform(-0.5, 0.5) for _ in range(2)] + [random.uniform(-0.5, 0.5)] # Zwei Gewichte + Bias
|
||||
|
||||
sensor = Sensor(sensor_queue, neuron_queue)
|
||||
neuron = Neuron(weights, neuron_queue, actuator_queue)
|
||||
actuator = Actuator(actuator_queue)
|
||||
|
||||
sensor.start()
|
||||
neuron.start()
|
||||
actuator.start()
|
||||
|
||||
cortex = Cortex(sensor_queue, neuron_queue, actuator_queue)
|
||||
cortex.start()
|
||||
|
||||
cortex.join()
|
||||
|
||||
sensor.join()
|
||||
neuron.join()
|
||||
actuator.join()
|
||||
|
||||
print("System terminated.")
|
||||
Reference in New Issue
Block a user