WIP: stochastic hill climber
This commit is contained in:
151
experiments/stochastic_hillclimber/actors/trainer.py
Normal file
151
experiments/stochastic_hillclimber/actors/trainer.py
Normal file
@@ -0,0 +1,151 @@
|
||||
# trainer.py
|
||||
import asyncio
|
||||
import time
|
||||
from typing import Any, Dict, List, Tuple, Optional
|
||||
|
||||
import morphology # dein morphology.py
|
||||
from genotype import construct, save_genotype, print_genotype
|
||||
from exoself import Exoself # deine Actor-basierte Exoself-Implementierung
|
||||
|
||||
|
||||
class Trainer:
|
||||
"""
|
||||
Stochastischer Hillclimber wie im Erlang-Original.
|
||||
- morphology_spec: entweder das morphology-Modul, ein String-Key, oder eine Callable-Morphologie
|
||||
- hidden_layer_densities: z.B. [4, 3]
|
||||
- max_attempts / eval_limit / fitness_target: Stoppbedingungen
|
||||
- experimental_file / best_file: Pfade, falls du wie im Buch speichern willst
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
morphology_spec=morphology,
|
||||
hidden_layer_densities: List[int] = None,
|
||||
*,
|
||||
max_attempts: int = 5,
|
||||
eval_limit: float = float("inf"),
|
||||
fitness_target: float = float("inf"),
|
||||
experimental_file: Optional[str] = "experimental.json",
|
||||
best_file: Optional[str] = "best.json",
|
||||
exoself_steps_per_eval: int = 0,
|
||||
):
|
||||
self.morphology_spec = morphology_spec
|
||||
self.hds = hidden_layer_densities or []
|
||||
self.max_attempts = max_attempts
|
||||
self.eval_limit = eval_limit
|
||||
self.fitness_target = fitness_target
|
||||
self.experimental_file = experimental_file
|
||||
self.best_file = best_file
|
||||
# Wenn deine Exoself/Cortex eine feste Anzahl Zyklen pro „Evaluation“ braucht,
|
||||
# kannst du hier default 0 lassen (Cortex entscheidet über Halt-Flag),
|
||||
# oder einen Wert setzen.
|
||||
self.exoself_steps_per_eval = exoself_steps_per_eval
|
||||
|
||||
# Laufende Akkus (wie im Erlang-Code)
|
||||
self.best_fitness = float("-inf")
|
||||
self.best_genotype: Optional[Dict[str, Any]] = None
|
||||
|
||||
self.eval_acc = 0
|
||||
self.cycle_acc = 0
|
||||
self.time_acc = 0.0
|
||||
|
||||
async def _run_one_attempt(self) -> Tuple[float, int, int, float, Dict[str, Any]]:
|
||||
"""
|
||||
Ein Trainingsversuch:
|
||||
- Genotyp konstruieren
|
||||
- Exoself laufen lassen
|
||||
- Fitness/Evals/Cycles/Time zurückgeben + den verwendeten Genotyp
|
||||
"""
|
||||
print("constructing genotype...")
|
||||
geno = construct(self.morphology_spec, self.hds, file_name=self.experimental_file, add_bias=True)
|
||||
|
||||
# Exoself starten und bis zum evaluation_completed warten
|
||||
fitness, evals, cycles, elapsed = await self._evaluate_with_exoself(geno)
|
||||
|
||||
return fitness, evals, cycles, elapsed, geno
|
||||
|
||||
async def _evaluate_with_exoself(self, genotype: Dict[str, Any]) -> Tuple[float, int, int, float]:
|
||||
"""
|
||||
Startet Exoself (deine Actor-basierte Variante) und wartet,
|
||||
bis der Cortex die Evaluation abgeschlossen hat.
|
||||
Erwartete Rückgabe: fitness, evals, cycles, elapsed
|
||||
"""
|
||||
print("creating exoself...")
|
||||
ex = Exoself(genotype)
|
||||
# Exoself.run() sollte idealerweise einen Tuple (fitness, evals, cycles, time)
|
||||
# liefern. Falls deine Version aktuell „backup“-Listen liefert, ersetze das hier
|
||||
# mit der passenden Logik oder benutze das „evaluation_completed“-Signal aus dem Cortex.
|
||||
fitness, evals, cycles, elapsed = await ex.run_evaluation()
|
||||
return fitness, evals, cycles, elapsed
|
||||
|
||||
async def go(self):
|
||||
"""
|
||||
Entspricht dem Erlang loop/…:
|
||||
Wiederholt Versuche, bis Stoppbedingung erfüllt.
|
||||
"""
|
||||
attempt = 1
|
||||
while True:
|
||||
print(".........")
|
||||
print("current attempt: ", attempt)
|
||||
print(".........")
|
||||
# Stoppbedingung vor Versuch?
|
||||
if attempt > self.max_attempts or self.eval_acc >= self.eval_limit or self.best_fitness >= self.fitness_target:
|
||||
# Ausgabe wie im Buch
|
||||
if self.best_genotype and self.best_file:
|
||||
# bestes Genotypfile ausgeben/„drucken“
|
||||
save_genotype(self.best_file, self.best_genotype)
|
||||
print_genotype(self.best_file)
|
||||
print(
|
||||
f" Morphology: {getattr(self.morphology_spec, '__name__', str(self.morphology_spec))} | "
|
||||
f"Best Fitness: {self.best_fitness} | EvalAcc: {self.eval_acc}"
|
||||
)
|
||||
# Optional: an „Benchmarker“ melden – bei dir vermutlich nicht nötig
|
||||
return {
|
||||
"best_fitness": self.best_fitness,
|
||||
"eval_acc": self.eval_acc,
|
||||
"cycle_acc": self.cycle_acc,
|
||||
"time_acc": self.time_acc,
|
||||
"best_file": self.best_file,
|
||||
}
|
||||
|
||||
print("RUN ONE ATTEMPT!")
|
||||
# --- Ein Versuch ---
|
||||
fitness, evals, cycles, elapsed, geno = await self._run_one_attempt()
|
||||
|
||||
print("update akkus...")
|
||||
|
||||
# Akkus updaten
|
||||
self.eval_acc += evals
|
||||
self.cycle_acc += cycles
|
||||
self.time_acc += elapsed
|
||||
|
||||
# Besser als bisher?
|
||||
if fitness > self.best_fitness:
|
||||
# „experimental.json“ → „best.json“ (semantisch wie file:rename(...))
|
||||
self.best_fitness = fitness
|
||||
self.best_genotype = geno
|
||||
if self.best_file:
|
||||
save_genotype(self.best_file, geno)
|
||||
# Reset Attempt-Zähler (wie Erlang: Attempt=0 nach Verbesserung)
|
||||
attempt = 1
|
||||
else:
|
||||
attempt += 1
|
||||
|
||||
|
||||
# --------------------------
|
||||
# Beispiel: ausführen
|
||||
# --------------------------
|
||||
if __name__ == "__main__":
|
||||
# Beispielkonfiguration (XOR-Morphologie, kleine Topologie)
|
||||
trainer = Trainer(
|
||||
morphology_spec=morphology, # oder morphology.xor_mimic
|
||||
hidden_layer_densities=[2], # wie im Buch-Beispiel
|
||||
max_attempts=1000,
|
||||
eval_limit=float("inf"),
|
||||
fitness_target=float("inf"),
|
||||
experimental_file="experimental.json",
|
||||
best_file="best.json",
|
||||
exoself_steps_per_eval=0, # 0 => Cortex/Scape steuern Halt-Flag
|
||||
)
|
||||
|
||||
asyncio.run(trainer.go())
|
||||
Reference in New Issue
Block a user